People

{{:public:2021:20210815_profile_jhgoh.jpeg?150}}

* **PI: Junghwan Goh** (Space21-607, Kyung Hee University / jhgoh -at- khu.ac.kr) * 2022-present: Associate professor / Department of Physics, Kyung Hee University * 2021-present: Science Information Convergence, Kyung Hee University * 2020-2024: Department of Big Data Analytics, Kyung Hee University * 2018-2022: Assistant professor / Department of Physics, Kyung Hee University * 2016-2018: Research Professor at Hanyang University * 2017-present CMS RPC Detector Performance Group coordinator, CERN/LHC * 2016-2017 CMS RPC Upgrade coordinator (deputy), CERN/LHC * 2014-2016: Postdoc at SungKyunKwan University / Korea CMS at CERN * 2014: Ph.D Physics at SungKyunKwan University

* **Team Members** (Space21-904, Kyung Hee University) * Postdoc: S. Yang * Ph.D: C. Yoo(2025.02), W. Hwang, J. Shin * Master: J. Oh(2025.02) * **Alumni** * Researcher: R. Rabadan(2021) * Master: H. Hwang(2024.08), H. Park(2023.02), H. Jeong(2023.02), S. Lee(off), D. Nam(off) * Undergrad: D. Bae(2020) * **Required skills** * Research: //Experimental particle physics, Particle detectors, Machine Learning, Deep Learning// * Software & computing: //C++, python, ROOT, Geant4, numpy, pytorch, tensorflow, CUDA, FPGA, HLS, bash, html, javascript, php// * System administration: Linux, //Grid / HTC, HPC, condor, pbs(torque), kubernetes, docker, singularity//

Research topics

* LHC/CMS experiment * Top quark reconstruction using Deep Learning * Search for Flavour Changing Neutral Currents * RPC detector efficiency measurement, Data quality monitoring * RPC software release validation * Neutrino experiments * Search for sterile neutrinos at JSNS2 experiment using Machine Learning * Pulse shape discrimination using Deep Learning * Reactor neutrino experiment closest to the core * Computing/Deep Learning * [[:project:2019_kisti_supercomputing:start|Large scale deep learning with the supercomputers]] * [[https://github.com/nurion4hep/HEP-CNN|HEP-CNN github]] * Accelerated Deep Learning using the FPGAs * KCMS computing resources

Quick links

* CERN/CMS 실험 \\ [[https://cern.ch|CERN]] [[https://cms.cern|CMS실험]] [[https://cms.cern.ch/iCMS|CMSInternal]] * Software 개발 \\ [[https://github.com|github]] [[https://colab.research.google.com|GoogleColab]] * [[https://indico.cern.ch/category/6803/overview?period=day|CMS today's meetings]] [[http://cms.cern.ch/iCMS/analysisadmin/cadilines|CMS CADI]] \\ [[https://cms-mgt-conferences.web.cern.ch/cms-mgt-conferences/Default.aspx|CMS CINCO]] * [[https://lsa-phys-spitz-docdb.miserver.it.umich.edu/jsns2/cgi-bin/ListAllMeetings|JSNS2 meetings]] \\ [[http://210.119.230.203/wiki/|Korea JSNS2 wiki]] * [[documents|Collection of documents]]

Data analysis Tutorials

* [[internal:undergrad_tutorial]] * [[internal:uproot_tutorial]]

Data Analysis Facilities

* Local servers ([[https://hep.khu.ac.kr/observability|Monitoring page]]): * Main server: Xeon Silver 4210R (k8s master & file server & auth.) * High perf nodes: EPYC 7702, EPYC 7302 (Alveo U200 FPGA) * GPU: Ryzen Threadripper 399X (GPUx4), Xeon E5-1650v4 (legacy GPU) * Networking * Kreonet (1G KISTI Seoul - KHU Dept. of Physics) * Internal networks (Dell EMC X4012 12 SFP/10G, HP 1420-24g/1G) * External computing resources * CMS: CERN (lxplus), KISTI GSDC, etc * JSNS: KEK (kekcc) * KISTI supercomputing center

User manual

* [[public:docs:hep_tutorial_loadmap|고에너지물리 연구 시작하기]] * [[public:docs:generators_and_rivet|Generator와 Rivet 사용하기]] * [[internal:how_to_workstation|Workstation 사용법]] * [[public:docs:useful_setup_for_users|유용한 유저별 세팅 방법]] * [[internal:how_to_start_analysis_on_singularity|Singularity로 root 프로그램 사용하기]] * [[project:jsns2:how_to_singularity_for_JSNS2|JSNS2 실험을 위한 singularity setup]]

System admin

* [[internal:system_setup|서버 구성 정보(internal)]] * [[https://hep.khu.ac.kr/obervability|Grafana 시스템 모니터링]] * [[https://app.asana.com/0/788107337367369/list|프로젝트 관리 (Asana)]]

Miscellaneous

* [[Restaurants|근처에서 식사하기]]

---- [[https://www.khu.ac.kr/kor/sub/content.do?MENU_SEQ=1070|개인정보 처리방침]]